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Embodied Intelligence for Flexible Manufacturing: A Survey
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Abstract: Driven by breakthrough advances in modern artificial intelligence, embodied intelligence, an important subfield
of Al, is rapidly making inroads into industrial manufacturing. Industrial scenarios, with their semi-structured environments,
relatively stable operating conditions, and standardized processes, offer fertile ground for the swift deployment of embodied
intelligence technologies and are poised to become the first domain to see their large-scale adoption. However, as the modern
manufacturing paradigm shifts toward high product variety and small batch sizes, mixed-model production lines, rapid
product iterations, and unstructured, non-standardized processes have become the new normal, placing simultaneous demands
on intelligent manufacturing systems to manage complex workflows and guarantee the required level of production precision.
Embodied intelligence in flexible manufacturing faces three core challenges: @© accurate process modeling and monitoring
under limited sensing; @ maintaining a dynamic balance between flexible adaptation and high-precision manipulation; @
coordinating general robotic skills with specialized industrial procedures. These challenges create new opportunities for the
field. Accordingly, this survey reviews existing work from three viewpoints: Industrial Eye, Industrial Hand, and Industrial
Brain. At the perception level (Industrial Eye), we examine multimodal data fusion and real-time modeling in complex,
dynamic settings. At the control level (Industrial Hand), we analyze flexible, adaptive, and precise manipulation for demanding
processes. At the decision level (Industrial Brain), we summarize intelligent optimization methods for process planning and
line scheduling. By considering multi-level collaboration and interdisciplinary integration, we identify key pathways for
closing the perception-decision-action loop. We propose a three-stage evolution model for embodied intelligence—cognition
enhancement, skill transition and discuss future directions. Our goal is to offer a theoretical foundation and practical guidance
for cross-disciplinary progress in industrial embodied intelligence under the trend toward flexible manufacturing.
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Fig. 1 The overall framework of this survey
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Tab. 1 Comparison of technical requirements for common flexible manufacturing scenarios
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Fig.2 The core challenges and solutions
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Fig. 3 Working principles of mainstream 3D imaging methods
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Tab. 2 Comparison of mainstream 3D imaging technologies
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Tab.3 Summary of common industrial sensing modalities
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Fig. 7 Pipeline for fusing image and point cloud modalities

4 5 )51, PointMAEB®! 5 PTv3 871 ¥ ShapeNet
FRHRE LG, X Tl s = ECHE S IR 2
flitt R L ) SR DA Z A RE 1. A
SIRIES v HEA A AudioSet ™ |15l 251
PANNs ™ 1 YAMNet 0, K550 g5k i P2
FRATFER T TV B2 W o o 75 i 21 i o PR AE
5] A PatchTST " F1 TimesNet °? £l 25 T
W2, S Tl B P Bt A T ERE A . AE AL M
1, InfMAE 1 B F 7 g it 5 I I 25
AL, SR PR BEAS I 5 TR T R AL T R A
WGk . X BT 2R R Tl 37 5 i 2 U s il
PRt T AT EEE T R, BEAR T ARTEFRIINZRAIAS , 1
JE T MEA R RGN PG LA S HE R K

SRR 5F S8 ARSI SR UL Z PRI
1 B, WEERHMERXN 555 Rl A g ik — 25k
IR Z LR YSIIDP S I 2 L E OV Baik R s N Gk e i)
ARG 2 S Sy i SCasTR], SE IS BT L —
B o 17 2 SR Bl 7 U 3R A 58 R 57, 45
L5 W RAF SRS BAME Bt T2 e G,
JRER RS TCIA PR B e B . B RIS ISR R AE

ZRSRAIEXT T R 2 PP, LA L
2] HRER AL LA, AT BLAS RS a]
(501 25 SN ZE R 22 5 o 6 B2 > A 3[R YR E
FEAS R SR OUREAS | AN (R BCESLT 21 3L 520 3
ZEN] . PR CLIP Y PR SOARFRAE 5% X 5%
FEAE AR AR P P ISR KR AR ) B0, Bk
FHATTIE N E T BT 8 S R G & (i
TRBEAUAR A0 A7 O ARG IR A Y ) SRS
FERITEAELR S, AT BRARES Ta] 4R S AN RO 22 57
BT IR EAE L AL R & S B RUS R R PR T
0 BTN AT AR )

HRIALE U RS AE TR JT (Token) ZAFAE
5 A AR % Y 2 R A EAMEKHSE, BEAR B R
T S 4 Jeyi X, E T IZ N - Mul T 1O 2
ARG AT R LR ARETE, %
J5 8831 T Crossmodal Attention A3, 3 i Trans-
former R E 4. WAL 5 SCA SR R B F 91 5 #2060
5, KRR . EMTU? @i 2R E
PRSI T X AR B B S X5, FRAlE AT
S PR AR SR 2RSS Bt AnyGPT U 5]
A “UERBEMER” ZHESXTIERET), FFRIEFEE
FRMIARS (T, Ok, BMR) G—mih
EHORATTF A, JOTE S IA AL sl I 257
TEAL "4 $11 “Tokenize and Embed All” 5fH& . Ff
A BB B HCA 18] 76 7 91 9 WS 31 e =i A A5 1]
gk A B 1A A i, VRS R O S A
WEOR B SCARE Ty, XOAT AL 2 Fh AR SCARBIAS.
M2PT O} 4 — RS RS B AR IRy ¥, MRS
TR SRR SHAL LS, SRS R T
# . Meta-Transformer "% 35 13 45 — P HE SR B/ T H:
TR P IRE Ty, SCRrR g g . 0. W
Wi BRFS). S E 2 MESIEIA

ZEEFERY RS RHER ST G, 2
MEEEANBESESER, WEE2m. &
FRRRAE . Rl AR b R IR 25 518 A 5F, K
ARSI EAMES, S TR 5FEEELR. R
ML I IS ARIE, HAE B RS R R
PSR RRF AR P RE o AR & B LA 7=, BT
K58 LI Z AR Al & 75 R E (Barly
Fusion) . M#iEh#& (Late Fusion) FlH[a]fi4& (In-
termediate Fusion) U9, S[a] R 4RAE A O Y5 7E L
W A& AR S R, 3%k 4 Fos.



9 AREL, AF T R G A H SR RS

K4 ZHSFHERL G T IR LB H

Tab. 4 Advantages and disadvantages of multimodal feature fusion methods
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Fig. 8 Architecture of self-supervised multimodal
representation learning

Wi fE K2 (Stanford University ) #4571 BA 108!
RS TR A& (RGB-D EM) . il (/5%
JI-15E) SAERIERA CRig (S 53 ), RIS
%T%ﬁﬁ@,W@S%%oﬁi%%ﬂﬂﬁy%m

TAESr B ARASAR I GH , T L ZK A (Product
of Experts) O8] N [ AR A A TR AE F s A A, A
BUA G| ASGRAL 5 el g R W 45 B IR AT 5%
PATH RS A S A K, h g2 ) fR it B H
HCEE A ZIT AT T AT vERE, SEEL T
PRI R Syt THERE Ty, ik T HAE E LA
ARG SR, XRY], SIS AR
B S AT N TARYERIHOT, i Tl B B fE
TEE AN A i T AR S F



2025 4 4 H

Bl 2% A 10

RBIESE 20 RS AR EICE RN R
i SE I DR S H PR BTN A R . BESE . 4
(EARGRIE, DAMESR BRI . AR G0 BB 1R IR AT
TERATE X - IAE5) 32 5I0E T PER 2 1 mm; s
ZWEFE (R L AR T 10 dBs HUL/HL R A5 kA
DURESCIR I AMEE,, M AER BT A2 2% B it S5
TREETLAT . RS U1 BOR A X SE 3k iy
K, WAL, A BESHER, TR
HERJR SRR, ST B SR Sz LR Sy, S
H BT AR 1 v AR

B9 RS R A T e o 1)
Fig. 9 Fusion of multi-source heterogeneous information for
welding quality prediction

bR B R 2B ST AT A B T e AR
RE Z BRI SE IS Rl A, DASR BT A5 42
F R H 4 T L ST . AR
HLE S 2R, i 9 R . Mg B i CNN
AL PR 1R, SR TR TR . RS ARPESFAFAE . P
BREASOR I Hs S U AT R 2 S T ik, SR HCTY
Bt WRE. PRifEZE MBI TR L. HL(E SR
AW R R G T RAE . X 2 Ay
fibid i AR AL B S S A LSTM (25051 TRl G,
FA ] PP SRR RE i sh S . R ARS
BT, BIRWTRERT 0-2 BPFINIE B . FeFas
BREE, N TR OGN 8] 7
1.3 T#lsEaEs

MR R, AR, T2RES
AL MBI, MRS TR Rz AL
PG EEOR . RS RI 2 DME 55 ol
PEATRERIUNGR, MELERE . 15 T O Z H R G T
B, SEMRG AR, giiiAcE . Atk, Tl
MUAE AR 2 3T ol AT S,
AR R A D REARIE Y, . AR5 2 (I B RS i
SRS, RES ARG ML S AE A

PRI R E SR Is T . i B R AR A
HRESTHX, AR S TR R S5 1 3 Ak
5GP E 2T 1) .

P SE R BRI 22 2] 5z e s B REAEY (Vi
sion Foundation Models, VFM ) & 7&K HiAs (& 45 B
PATE E TS, Bag) iz i Mk 5 iRz A he
FRLEAR Y o AT A — R I 25 B AT S e 15 o
S 185,90 1151 | kel (16-117) | el 43 11181191 ==
Y3 0> PN SBATSS RARAT S R AL T
FIAE, SEEE CBRAERIAY PR R .

B M2 ) R o B RS 2 T 1 2 ) 3 3
. BRI AN TARER 2T, ik
B M R FRAEE TR 2 5 rh 22 S i . ERT RN
FEIED K15 345 (Masked Image Modeling, MIM)
PR L PAREOT-2#ERESL . MIM &2 BERT 122
Ak, I FEALER R O B, SR T TR
T SCEARRE ), JUHGE T A58 Transformer 2244
$F 22 ) 5t SimCLR U231 MoCo 11241, BYOL ']
A I AR, 25 3] A B 4 SR X
FRAE, SRR R R AR G5 S iE U A, $ T+
R4 TR RE T -4 3% (40 DINOUSY) fE 1
AR ZER 2O BL], R EOTBIR T AL B R R
AL, FEE e T SRR AR RIS, AT AT 24 R
HRIE, A&RIFWREESZeM.

PSRRI 2 Ak g g I PR Y AR TH N 22
FEAAT 55 IR RFORAE N 1 o WL 3 B BLAE = A
T (1) Ge—F45 @bt 18 b s M i A -4
X, BRI AT —{RAb A2 ] R SEAE S .
LaVin-DiT "?7 fili [l BE &4 5L Transformer #1253 [a]-Hs}
()48 5 H it , SEERT 20+ AE45 19 585 (2) BF
XA s BRAGE A G AESHIASURS, SEIERE
AR/ DREAR LSS TR, MetaVL U2 oy yORHE F AL
By IR SCE S i BB SR, SEE R
BRI maGERd: (3) 2RS¥ SRR W
Uni-Perceiver v2 "2V {ifi F] 45— 11 5 AR AR 55 s Ak 7L
e G ETE FAES5, TEREHMIMAE T thEe
MRS A Bl g

M YE S AR PR S RS A A A A 55
1, SAM (Segment Anything Model) 181 ) i[f#5 74
ST LRI R ) M, SCIL T EET A REL S
REEZ TR BREA SR, B REFMEILS
B4 Rtk . HIHFMA SAM 210 SZREST#I A
15 Byt zUN A Transformer FIAZ KRG 14, 523
T AK WA SE 4] (30 fps) . Depth Anything 1301



11 PREL, AF T RS A H SR RS

UREEAG TR AL i U242 E 508, 7R Tohn EIg -
RS, 454 Vision Transformer 5P & 4% 11 B
HEEM T, H V2 A 51 & sl 2%
UPALEY, $EFF T URBETIRG B2 . HE —4E R A 24k
175, NVIDIA [ FoundationPose !'32! $# {145 — (7
oD i Attt HIREHESL , SZHF CAD s 44 A,
AR IR 5IE FRBURN, FEXT A > s
MEEYARZ AL . FERGERFIESE —RAE T, Meta Al
i) DINOv2 ¥ 3 55 ph ity 22 RUEE VIiT R & )55 )R
HRXTEE . AR DA SR 2R R N 25, 72 M AE
arEL BRI, SR AT SR 2 R RS B
SRIZACRHIE . FEZ OB G T, Wi Res s
Google Robotics # ) 3D-MVP 133 {3 K HiEE £
LA RGB-D ik, BEA s L B L 5 U — bk
Hd, R LS IURE, FERASMITT SRR
55 vy ok B M RERE T

Bl — AR A, HEAIEY R =
Y b0 . X AR BRI AL G 1) 05 B
BURFALTE, T2t 2 2 E AL S A5 )
518 LA % 5. 3D-VisTA!3 | RangeViT !9 5
UniT3D 30 FE7R% T Transformer fF =4k 5i-1E=
SRk FRiBGE T, AL 2ESFGE—. B
ARG 5B SOz Y FE =R B T,
DUSt3R I 5] A [ (Pointmap) £, RIS
AT G b i = 4ES5#) A 2, ik T
LA AR . VGGT 50 75 3L fy b AL e 5 it
ZALSAELE, W AR K a2 5K R R B S AE AL 2
B WREE. SRS YRR EERRE A TR T
S B o) A B AR G E L — 2k, 2
— T T YT S I PERE 5 RCR .

BB AL AR R E ST EA R
Iz ARRE Ty, ABAE TR A 55 R TR R PABE 47
R ARG BRI PR TR oK . H Al O v e 4 4
¥R (Full Fine-tuning) !, £k V£ (Linear Probing )
04 5 20 E il (Parameter-Efficient Fine-Tuning,
PEFT) W, 2GS TRETE . Bk st
REMI 5t SMERIMAUNGAT S5k, & AP iE B
YR Z RIS . PEFT NIZEVERE 5308 2 [ ST
flig , B R, UGS T 2R S B G A
B, REFFEEIEMFLILR (Low-Rank Adaptation,
LoRA) 71 S&EFC#544H (Adapter Tuning) 1381
PERTAE (Prompt Tuning) 1391491 LoRA S5+
BN, A KBRS Adapter Tuning H4%
RLAFA AT 55 1L RS RE ;. Prompt Tuning 385 iy A5 |
S E /MU GRS . PR T RIS PR SR
P, BB T 25 REmirfE TH. &~
[i] PEFT J7yEPEREXT LU G5 FE R 5 .

RS WSROI TN

Tab.5 Comparison of common PEFT methods
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Fig. 10 Industrial defect detection using AnomalyDINO

AnomalyDINO "1 i i3 5 | AL £l 24 DI-
NOV2 ™1 Sl T iR D REA S AN, AP 10 Jip
o ZSATAEET DINOV2 $REUH —AELSERFIE AL 2
O, R RELBER: ARE s DR ASE I AR
ZAPE. Jr A DINOV2 [ B4R A4 #1681 A4 1
MR VAR R 1T SRS, DASE O Tl B By 5
I, A2 TR RS Y S RESE A
MLE AR B A LA 51 OB AR RE /7, Frde
B PN SR BE AL REAS A R X S Nk 5 T %
G L A e S T i R T i R s
WERCRIEME, BER PR E T Tk, WdmaL
iU RllES

FBIDETE 2: TS gBRPg il KA ITHE T
VAR TERG I S SRR EERY, SCEEHARERL. BRAE
R =4 @S5 . R OET M. I
sRPETR, MERRRSTE MR A R OIS BRI A
PR BRI LATRER . JTAF R I T IR B~ 2T Y DT RC Ty
YASE) % . SuperPoint ') 3 j I A2 ST HRAE S5 T
B B2 THE R, LoFTR '™ Rl COTR ™! 5] A
Transformer 2 -4 Jey @B AE 1. SR, FES5ECHE,
AR PR S A v B Tk 50, AR v



2025 4F 4 H L

A 12

(a) SELURAFHEAITE

(b) RERREGHZ

11 DUSER £ 55 8RR A B B HER B
Fig. 11 Example of DUSt3R stitching on low-texture
automotive-chassis images
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Fig. 12 High-quality robotic drilling in uncertain environments
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Tab. 6 Comparative characteristics of industrial control methods
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Fig. 13 Part pose recognition in cluttered multi-instance scenes
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Fig. 14 Flexible circuit and smartphone camera assembly
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Fig. 16 Examples of diverse part geometries and poses in
flexible assembly scenarios
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Fig. 18 Real-time parameter control based on molten pool
observations
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Fig. 29 Digital modeling and simulation of bolt tightening
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